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1 Introduction

Chiral perturbation theory (CHPT) is the effective field
theory of the standard model at low energy [1,2]. It is based
on the spontaneously broken approximate chiral symmetry
of QCD. The pions, kaons and the eta can be identified
with the Goldstone bosons of chiral symmetry breaking.
Their interactions are weak and vanish in the chiral limit
of zero quark masses when the energy goes to zero. This
is a consequence of Goldstone’s theorem and allows for a
consistent power counting. Consequently, any amplitude
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can be written as sum of terms with increasing powers in
external momenta and quark masses, symbolically

A = pD f (p/µ, g) , (1.1)

where f is a function of order one, p collects the small
parameters, D is the chiral dimension, µ a regularization
scale (related to the UV divergences in loop graphs) and g
a collection of coupling constants, the so-called low-energy
constants (LECs). Weinberg [3] first established this power
counting, in particular, the expansion in p (the chiral ex-
pansion) can be mapped onto an expansion in terms of tree
and loop graphs, with n loop graphs being parametrically
suppressed by powers of p2n compared to the leading trees.
The explicit expression for D reads

D(A) =
∑
N

Vn(n − 2) + 2L + 2, (1.2)

with L the number of Goldstone boson loops and Vn a ver-
tex of order O(pn). In essence, this power counting works
because the pion mass vanishes in the chiral limit and thus
the only dimensionfull scale in this limit is the pion decay
constant Fπ (more precisely, its value in the chiral limit).
Utilizing a symmetry preserving regularization scheme like
e.g. dimensional regularization leads to homogeneous func-
tions in the small parameters (for more details, see the
reviews [4–8]). The precise relation between this effective
field theory (EFT) and the chiral Ward identities of QCD
was firmly established in [9, 10].

The active degrees of freedom in CHPT are the Gold-
stone bosons, chirally coupled to external sources. It has,
however, been known since long that vector andaxial-vector
mesons also play an important role in low-energy hadron
physics, as one example we mention the fairly successful
description of the pion charge form factor in terms of the
(extended) vector dominance approach (for more details,
see e.g. the reviews [11, 12]). These heavy degrees of free-
dom decouple in the chiral limit and at low energy from the
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Goldstone bosons. Nevertheless, they leave their imprint
in the low-energy EFT of QCD by saturating the LECs,
which has been termed resonance saturation [13–15]. We
will discuss this issue briefly in Sect. 2. Here, we are inter-
ested in an extension of CHPT where these spin-1 fields
are accounted for explicitly. While it is straightforward to
construct the corresponding chiral effective Lagrangian (as
briefly reviewed also in Sect. 2), the computation of loop
diagrams is not. This is related to the appearance of a large
mass scale in this EFT, namely the non-vanishing chiral
limit mass of the spin-1 fields. This scale destroys the one-
to-one mapping between the chiral expansion and the loop
expansion, as discussed in more detail in Sect. 3. To be
able to proceed in a systematic fashion, one has to be able
to separate the contributions to loop diagrams originating
from this large mass scale in a controllable and symmetry-
preserving fashion. This problem also appears in the EFT
when nucleons (baryons) are included (in fact, it has been
analyzed first in this context [16]), and various solutions
have been suggested, like heavy baryon CHPT [17, 18],
subtraction schemes for the hard momenta [19], infrared
regularization [20] or extended on-mass shell regulariza-
tion [21]. For the case of the vector mesons considered
here an additional complication arises – these particles
can decay into Goldstone bosons and thus appear in loops
without appearing in external lines. Here, we will present
an extension of infrared regularization that allows one to
treat such diagrams. In Sect. 4, we briefly review the in-
tuitive approach of [19] how the contributions from the
hard scale can be tamed. The more elegant infrared regu-
larization [20] is introduced in Sect. 5. In Sect. 6, we discuss
the new contributions to the Goldstone boson self-energy
graph when the heavy particle only appears in the loop.
The singularity structure of these loop graphs is analyzed
in Sect. 7. Based on that, we show how the infrared singular
part can be obtained for such type of one-loop diagrams
in Sect. 8. The method is then applied to the self-energy
graph where the spin-1 field only appears inside the loop;
see Sect. 9. The corresponding triangle graph is discussed
in Sect. 10. Section 11 contains the analysis of the vector
meson self-energy diagram with a pure Goldstone boson
loop, which does not only involve soft momenta. As an ap-
plication, we discuss the chiral extrapolation of lattice QCD
data for the rho meson mass and related topics in Sect. 12.
A brief summary is given in Sect. 13. Some technicalities
are relegated to the appendices. Note that our considera-
tions apply only to massive spin-1 fields. For other works
on the problem of vector mesons in chiral EFT, we refer
to [22–28]. We also note that other techniques to expand
loop diagrams in various momentum regimes have been
developed for multi-loop standard model calculations; see
the recent review [29] and references therein. Many of these
results can also be obtained by matching procedures, for
an instructive work on this issue see [30]. Such a matching
procedure was indeed used in the third paper of [26] to
relate some of the parameters in the resonance theory to
combinations of fourth and sixth order CHPT couplings.
Also, it could be shown that the leading chiral logarithm in
the pion vector form factor in the resonance theory agrees
with the well-known CHPT result.

2 Prelude: Vector mesons in trees

In this section we show how vector mesons can be treated
in chiral perturbation theory when only tree graphs are
considered. This material is not new, but is needed to set
up the formalism and to set the stage for the discussion
of vector mesons in loops. The reader familiar with this
material might skip this section. Also, our considerations
are more general, they really refer to the coupling of heavy
degrees of freedom to the Goldstone boson fields. Further-
more, when talking about vector mesons, we really mean
vector and axial-vector mesons (spin-1 fields).

Our aim is to write down an effective Lagrangian con-
taining the vector meson resonances explicitly. The word
“explicitly” refers to the fact that the vector meson res-
onances are present implicitly in the Goldstone boson ef-
fective Lagrangians through their contributions to (some
of) the pertinent low-energy constant [13–15]. We want to
state this on a more formal level. Assume that we have
constructed a Lagrangian LRes(R, U, v, a, s, p) where R are
some resonance fields which might be the vector mesons
for example. U collects the Goldstone bosons and v, a, s, p
are vector, axial-vector, pseudoscalar and scalar sources.
The latter also include the quark masses, s(x) = M, with
M = diag(mu, md, ms) the quark mass matrix. The reso-
nances are all very much heavier than the Goldstone bosons
(e.g. Mρ ∼ 770 MeV), and therefore it is a consistent proce-
dure for a low-energy effective theory to integrate out these
heavy degrees of freedom by means of a path integration
over R:∫

[dR]ei
∫

d4xLRes(R,U,v,a,s,p) = eiZind(U,v,a,s,p). (2.1)

By doing the path integral, a Goldstone boson theory
(containing only U and the external fields) is recovered.
Zind(U, v, a, s, p) may be called the generating functional
induced by LRes(R, U, v, a, s, p) through the path integra-
tion. Such a step may be visualized in a Feynman graph
by shrinking the lines symbolizing the R-propagators to a
point, and attaching contact terms (interactions between
the remaining fields) to these points.

What is the physical content of all this? Computing the
R-induced Goldstone boson field theory means that some
interaction terms between the Goldstone (and external)
fields are computed by the path integration over R and
are therefore expressed through couplings of the resonance
to these fields and the resonance mass MR, which can be
measured in processes where the resonance occurs as an
external state. The interactions generated in this way can
be compared with the couplings determined by the LECs of
the original Goldstone boson field theory. This will show us
how important the resonance contributions to the processes
under consideration are. We get microscopic information
on these processes which we could not achieve with the
theory of the light fields alone.

Numerically, however, one could as well work with the
original effective field theory and simply include higher and
higher orders. As should be clear by now, the resonance
contributions are implicitly present in this theory, influ-
encing the values of the LECs. This can be illustrated by
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considering a diagram with a resonance line through which
a small (O(p)) momentum flows. The resonance propagator
can be expanded in this case using

1
p2 − M2

R

= − 1
M2

R

(
1 +

p2

M2
R

+ . . .

)
, (2.2)

leading to an infinite series generating terms of an arbitrary
high order. Including the resonance field explicitly, one
takes care of all terms in this series and not just the first
few terms of it. This can be advantageous. A nice example
can be found in [31], where the inclusion of vector mesons
substantially improves the results for the nucleon form
factors computed in that work.

With this motivation, let us now concentrate on the
vector mesons. Following [13], we will (first) use an anti-
symmetric Lorentz tensor field Wµν = −Wνµ to describe
the vector meson. This has six degrees of freedom, but we
can dispose of three of them in a systematic way; for de-
tails see Appendix Appendix A: and [13]. The spin-1 fields
transform as any matter field under the non-linearly real-
ized chiral symmetry,

Wµν(x) → hWµν(x)h† , (2.3)

where the compensator field h is defined via

u(x) → gRu(x)h† = hu(x)g†
L (2.4)

with gI is an element of SU(3)I , I = L, R and u2 = U .
The kinetic and mass term of the effective Lagrangian for
vector mesons has the form

Lkin
W = − 1

2
〈∇µWµν∇ρW

ρν〉 +
1
4

M2
V 〈WµνWµν〉, (2.5)

where
Wµν =

1√
2

W a
µνT a (2.6)

for an octet of vector mesons, and summation over the
flavor index a = 1, . . . , 8 is implied, and 〈 〉 denotes the
trace in flavor space. The pertinent covariant derivative is

∇µR = ∂µR + [Γµ, R]. (2.7)

It transforms as Wµν under the chiral group. Here, Γµ is
the connection,

Γµ =
1
2

(u†[∂µ−i(vµ+aµ)]u+u[∂µ−i(vµ−aµ)]u†) . (2.8)

For the SU(3) case we consider here, the T a are the usual
Gell-Mann-matrices which obey 〈T aT b〉 = 2δab as well as
[T a, T b] = 2ifabcT c, where fabc are the totally antisymmet-
ric structure constants of SU(3). The mass MV appearing
in (2.5) is strictly speaking the vector meson mass in the
chiral limit.

The vector meson octet we consider here may be given
in matrix form:

W =




ρ0
√

2
+ ω8√

6
ρ+ K∗+

ρ− − ρ0
√

2
+ ω8√

6
K∗0

K∗− K̄∗0 − 2ω8√
6


 . (2.9)

From the above Lagrangian, one can derive the propagator,

〈0 | T (W a
µν(x)W b

ρσ(y)) | 0〉

=
iδab

M2
V

∫
d4k

(2π)4
eik(x−y)

M2
V − k2 − iε

(2.10)

×[gµρgνσ

(
M2

V − k2)+ gµρkνkσ − gµσkνkρ − (µ ↔ ν)
]
.

Now we examine the interaction of the vector meson field
with the other fields of the theory, especially the Goldstone
boson fields. We actually already have interaction terms
coming from the covariant derivative, but they are bilinear
in Wµν . For the simplest diagrams we want to consider, we
need vertices with only one vector meson line attached to
them, i.e. couplings linear in Wµν . Therefore we neglect the
“connection terms” in the following. From the philosophy
of effective field theories, we are required to construct the
most general interaction terms consistent with Lorentz in-
variance, chiral symmetry, parity, charge conjugation and
hermiticity. The building blocks with which this can be
done are, in principle, at hand: the Goldstone boson fields
(collected in U or its square root u), the covariant derivative
Dµ acting on U , the object χ which contains the scalar and
pseudoscalar fields (in particular, the quark mass matrix),
the field Wµν (and the pertinent covariant derivative ∇µ

acting on it) and the field strength tensor Fµν for the exter-
nal fields vµ and aµ. For our purposes, it is more convenient
to collect these blocks in the combinations

uµ = iu†DµUu† = u†
µ,

uµν = iu†DµDνUu†,

χ± = u†χu† ± uχ†u,

F±
µν = uFL

µνu† ± u†FR
µνu.

This is better from a practical point of view because the
so-defined objects all transform like Wµν under chiral trans-
formations. This makes it easy to find chirally invariant
expressions: Just take some of the above objects and put
them inside a trace 〈. . .〉. This will then be invariant by the
cyclicity property of the trace. Of course, one can further
reduce these possibilities by imposing the other symmetries
mentioned above, and using the antisymmetry of Wµν .

What concerns power counting, it is clear that uµ is a
quantity of order O(p) due to the covariant derivative Dµ

giving one factor of momentum or external (axial-)vector
source. Similarly, the other objects in the list are of O(p2).

At order O(1), there is no term linear in W because
Wαα = 0. The lowest order interaction terms turn out to
be of order O(p2) and read [13]

Lint
W =

FV

2
√

2
〈F+

µνWµν〉 +
iGV

2
√

2
〈[uµ, uν ]Wµν〉. (2.11)

This is more complicated than it looks, because both terms
contain interactions with an arbitrary high (even) number
of Goldstone boson fields. One must carefully expand the
objects F±

µν and uµ to obtain the vertex for a particular
amplitude. It is now clear why vector meson singlets can
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be neglected: The sources to which they would be allowed
to couple are 〈F±

µν〉 and 〈[uµ, uν ]〉, but both traces are zero.
Note that a discussion of the numerical values of FV

and GV is given in [13, 15]. Furthermore, the vector field
formulation is summarized in Appendix Appendix B:.

3 Vector mesons in loops:
Statement of the problem

Difficulties arise when in a Feynman diagram lines repre-
senting a heavy matter field are part of a loop. The corre-
sponding amplitude will in general not be of the chiral order
expected from power counting. This has been noted many
years ago when the nucleon was incorporated in CHPT [16].
We already saw in the last section that power counting in
CHPT is not as straightforward as in the purely Goldstone
bosonic sector, and we already noted the reason for this,
namely, the presence of a new large scale: The mass of the
heavy matter field. In [16], it was shown that the parame-
ters of the lowest order pion–nucleon Lagrangian already
were (infinitely) renormalized by loop graphs in the chiral
limit. There exists a mismatch between the loop expansion
in � and the chiral expansion in small parameters of order
O(p). The loop graphs in general generate power counting
violating terms, confusing the perturbative scheme sug-
gested by CHPT. For example, a graph with dozens of
loops might give a contribution as low as O(p2). Clearly,
we will have to get rid of these power counting violating
terms if we want to keep this scheme when including heavy
matter fields.

For graphs where the heavy field only shows up in inter-
nal tree lines, the problem concerning power counting was
not urgent, because the chiral expansion of the amplitude
corresponding to such a graph at least started with the cor-
rect order. We saw this in the last section: We counted the
vector meson propagator as O(1), and in the low-energy
region, the momentum transfer variable t was much smaller
than the square of the heavy mass, allowing for an expan-
sion of the propagator in the small dimensionless variable
t/M2

V , which starts at O(1).

4 Soft and hard poles

If the heavy particle line belongs to a loop, an integration
over the four-momentum flowing through this line takes
place. Due to the pole structure of the propagator, the
integral will pick up a large contribution from the region
where the line momentum squared k2 ≈ M2

V , with MV

the heavy mass (we keep the index V to remind us that
we will concentrate on vector mesons, but the present dis-
cussion is more general). This is the region of the “hard
poles” in the terminology of [19]. These contributions are
of high-energy origin and clearly do not fit in a low-energy
effective theory – they must be identified as generating the
part of the loop integral which violates the power counting
scheme, because this scheme would clearly be valid if these
“hard poles” were missing. The only hard momentum ef-
fects for loop integrals in the Goldstone boson sector are

the ultraviolet divergences, which are handled by dimen-
sional regularization.

Before discussing the infrared regularization method,
for illustrative purposes we will shortly present the idea
of [19]. We remarked that the power counting violating
terms stem from the region k2 ≈ M2

V . Far off that region, for
k2 	 M2

V , it would be allowed to expand the propagator in
the small variable k2/M2

V , as we did for tree lines in the last
section. Of course, this is not allowed under a momentum
integral which extends to arbitrary high momenta kµ. But
it is too much of a temptation to do so, because in this
way one destroys the “hard poles” responsible for the power
counting violating terms. Doing the expansion, treating the
loop-momentum kµ over which one integrates as a small
quantity, and interchanging integration and summation of
this expansion, one ends up with an expression which obeys
power counting, because the hard poles are not present in
any individual term of the series which one integrates term
by term. Only the soft poles from the Goldstone boson (or
perhaps also photon) propagators will be present in the
individual integrals.

Clearly, this is not the old integral anymore, but a cer-
tain part of it, collecting only the contributions from the
“soft poles” – it is called the “soft part” of the full inte-
gral in the terminology of [19]. The remaining part, which
was dropped by this procedure, collects the contributions
from the “hard poles” and stems from the high-energy-
momentum region. It is argued that this part is expand-
able in the small chiral parameters and, truncated at a
sufficiently high order (depending on the order to which
one calculates) it is a local polynomial in these small pa-
rameters and can be taken care of by a renormalization of
the parameters of the most general effective Lagrangian.
The power counting violating terms are then hidden in
the renormalization of the LECs, and the “soft part”, with
subtracted residual high-energy divergences, is taken as
the renormalized amplitude appearing as a part of the
perturbation series. If this argument is correct, and the
part of the full integral which is dropped is indeed expand-
able in the small parameters, the “soft part” contains all
the terms of the full integral which are non-analytic in
the expansion parameters, like terms of the typical form
lnMφ/µ, the so-called “chiral log” terms where Mφ is the
Goldstone boson mass, and µ is the renormalization scale
(we will use dimensional regularization throughout). This
becomes large if one lets the Goldstone boson mass go to
zero. The physical interpretation is that in this limit the
range of the interaction mediated by the Goldstone bosons
becomes infinite, so that, for example, the scalar radius
of the pion (or other hadrons) is infrared divergent in the
chiral limit, which makes sense because it measures the
spatial extension of the Goldstone boson cloud.

We keep in mind that the “soft poles” in the region
where the loop momentum k ∼ O(p) are responsible for
the terms non-analytic in the small parameters, like chiral
log terms, and that all these terms obey a simple power
counting. This follows from the argument given by [19].
If one ever encounters a power counting violating term
non-analytic in the quark masses, for example, this would
invalidate the above argument – such terms cannot be
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hidden in the renormalization of the parameters of an ef-
fective Lagrangian.

We would like to demonstrate that arguments such as
the one cited above are indeed more than just wishful think-
ing. The basic features of the argument can be exhibited by
a toy model loop integral (it is straightforward to generalize
it – the formulas would only look a bit more complicated).

Consider the integral

I =
∮

C

dk

2πi
f(k)

(k − a)(k − b)
, (4.1)

where C is some contour in C \ {a, b} (enclosing the poles
or not) and f(k) is an analytic function. Such an integral
might e.g. be the k0-integration over a full loop integral.
The soft pole is called a and is of O(p) while the hard pole
is b. In fact, we will only need |a| < |b|. In the spirit of the
argument of [19], we destroy the hard pole in two steps

I →
∮

C

dk

2πi
f(k)

(k − a)

(
− 1

b

)(
1 +

k

b
+

k2

b2 + . . .

)

→ − 1
b

∞∑
n=0

∮
C

dk

2πi
f(k)

(k − a)
kn

bn
≡ Isoft.

Depending on the form of f(k), this will be ultraviolet
divergent if the contour extends to infinity, but this diver-
gence has nothing directly to do with the pole structure
and can be handled by a regularization scheme. By the
method of residues, Isoft is computed to be

Isoft =
f(a)

(a − b)

∮
C

dk

2πi
1

(k − a)
. (4.2)

We were allowed to sum the geometric series because |a| <
|b|. Therefore Isoft is just the first summand in the decom-
position

I =
∮

C

dk

2πi
f(k)

(k − a)(k − b)

=
1

a − b

(∮
C

dk

2πi
f(a)

(k − a)
−
∮

C

dk

2πi
f(b)

(k − b)

)

= Isoft + Ihard, (4.3)

which clearly separates the contributions from the soft and
the hard pole, respectively. We have thus demonstrated
that the expansion of the hard pole structures followed by
an interchange of summation and integration indeed gives
exactly the contribution from the soft pole. Note that the
above argument can be iteratively used for multiple poles.

A complementary approach would be to treat k as large,
expand the soft pole structure in the small variable a and
again interchange summation and integration, thereby iso-
lating the hard pole contribution which is by construction
analytic in the small parameter a. This may be called the
“regular” part of the loop integral. Again, divergences can
showupwhichhavenothing todowith thedetails of the pole
structure (infrared divergences if the contour C encloses
k = 0), but apart from this, the calculation analogous to

the preceding one will give nothing but Ihard. In this sense,
the approaches of [19,21] can be said to be complementary
to each other.

We will see in the next section that the arguments of [19]
can be refined or, as one should say, modified in a rather
elegant way. In particular, the method described in this sec-
tion does not always work because not all integrals converge
in the low-energy region, for more details on that issue, see
e.g. [20]. Much work has been done in that direction, but
this is not the place to describe these methods.

5 Infrared regularization

In order to find a more elegant way to separate the low-
energy part of the loop integrals, we will examine a loop
consisting of one “heavy” propagator and one Goldstone
propagator. We use dimensional regularization to handle
the ultraviolet divergence of such an integral, i.e. we give
a meaning for the notion of an integral in d dimensions,
where d might be fractional, negative, etc.

We consider the scalar loop integral

IV φ(q) = i
∫

ddk

(2π)d

1
((k − q)2 − M2

φ)(k2 − M2
V )

. (5.1)

Here q denotes an external momentum flowing into the
loop, Mφ is the Goldstone boson mass and MV is the
mass of the heavy particle. The “iε”-prescription, giving
the masses a small negative imaginary part, should be
understood here. We leave it out because it will play no
role in the following discussion.

There are two cases which have to be distinguished.
(1) The momentum q belongs to the heavy particle line of
the loop, in the sense that this line is connected to external
heavy particle lines (this would necessarily be the case if
the heavy particle is a baryon, because of baryon number
conservation). For the soft processeswe consider, this would
mean that

q2 − M2
V = O(p).

(2) The second case is that the loop is connected only to
Goldstoneboson lines,which is the case for the vectormeson
contribution to the Goldstone boson self-energy (Fig. 1b).
This cannot happen if the heavy particle line represents a
baryon. Then

q2 = O(p2).

a b
Fig. 1. Self-energy graphs. Solid and dashed lines denote vector
mesons (heavy particles) and Goldstone bosons, respectively.
While a can be treated by the IR method of [20], to deal with
graphs of type b, the method developed here has to be used
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We first investigate case (1). To this end we use a Feyn-
man representation

1
ab

=
∫ 1

0
dz

1
(a(1 − z) + bz)2

to write

IV φ = i
∫

ddk

(2π)d

∫ 1

0
dz (5.2)

× 1
[((k − q)2 − M2

φ)(1 − z) + (k2 − M2
V )z]2

.

Note from this expression that, for z = 0, the integrand is
a pure “soft pole”, while for z = 1 it is a “hard pole”. We
see that the soft pole structure which we want to extract
is associated with the region z → 0. After a shift k →
k + q(1 − z), the denominator of the integrand becomes

[k2 − A(z)]2,

where

A(z) = M2
V C(z),

C(z) = bz2 − (b + a − 1)z + a,

a =
M2

φ

M2
V

, b =
q2

M2
V

, (5.3)

and the d-dimensional k-integral can be done in a standard
way to give

IV φ = −Md−4
V

(4π)
d
2

Γ

(
2 − d

2

)∫ 1

0
dz(C(z))

d
2 −2. (5.4)

This will develop an infrared singularity as Mφ → 0 for
negative enough dimension d. From the expression for C(z),
we see that this singularity is located at z = 0, because in
that region we will have

(C(z))
d
2 −2 →

(
Mφ

MV

)d−4

,

generating a part non-analytic in the Goldstone boson mass
(remember that d can also be fractional). These findings
are consistent with the above observation that the region
z → 0 is to be associated with the soft pole structure,
coming from the Goldstone boson propagator. We come to
the conclusion that to extract the soft pole contribution, we
should extract the part of the loop integral proportional
to non-integer powers of the Goldstone boson mass (for
non-integer d).

Becher and Leutwyler have proposed a way to achieve
this [20]. They find that the decomposition of the loop
integral into a part non-analytic in a (and therefore Mφ)
and a part regular in a is given by

IV φ = I + R,

where

I = −Md−4
V

(4π)
d
2

Γ

(
2 − d

2

)∫ ∞

0
(C(z))

d
2 −2dz,

R = +
Md−4

V

(4π)
d
2

Γ

(
2 − d

2

)∫ ∞

1
(C(z))

d
2 −2dz. (5.5)

From the above remarks it is clear that R, which contains
the parameter integral starting at z = 1, will not produce
infrared singular terms for any value of the dimension pa-
rameter d. It will therefore be analytic in the Goldstone
boson mass. On the other hand, the so-called “infrared sin-
gular part” I is exactly the part proportional to non-integer
powers of the Goldstone boson mass, for non-integer di-
mension d. Moreover, it is shown in [20] that this part of
the loop integral fulfills power counting (as we would have
by now expected for the part associated with the soft pole
structure; see the discussion of the last section). We will not
repeat the proof for these assertions here, because we are
going to do a very similar calculation in the next section.

The parameter integrals for I and R do not converge for
d = 4. To give them an unambiguous value, a partial inte-
gration is performed to express them through convergent
integrals and a part that is divergent for d = 4, but can be
left away by an analytic continuation argument (analytic
continuation from negative values of the parameter d). For
details, see [20]. This leads to an explicit representation of
I and R for the case of four dimensions.

The infrared regularization (IR) scheme can now be im-
plemented by simply dropping the regular part R, argueing
that it can be taken care of by an appropriate renormaliza-
tion of the most general effective Lagrangian. This can be
done because it is analytic in the small parameter Mφ (and
in external momenta). The regular part contains the power
counting violating terms originating from the “hard pole”
of the loop integral, which have now been abandoned with
the dropping of R. We are left with the infrared singular
part I which obeys power counting. It still contains a pole in
(d − 4), which can be dealt with using e.g. the (modified)
minimal subtraction scheme. Having done this, we have
achieved the goal of a finite loop correction where power
counting allows one to compute correctly the order with
which this correction will appear in the perturbation series.

The method as presented here strongly relies on dimen-
sional regularization. In particular, the separation of the
loop integrals into two parts with fractional versus integer
powers of Mφ for a fractional dimension parameter d allows
for the argument that chiral symmetry (or more specifically,
the Ward identities) have to be obeyed by both parts sepa-
rately. Therefore dropping one part of it (the regular part)
is a chirally symmetric procedure because it leaves us with
a regularized amplitude that is again chirally symmetric for
itself. It is important here that the scheme of dimensional
regularization leaves chiral symmetry untouched, because
the validity of the Ward identities does not depend on the
space-time dimension parameter. Of course one must deal
with all loop integrals occurring in the perturbation series
in the same way to keep the physical content of the theory
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unchanged. The regular part of any loop integral that one
computes will have to be dropped.

If one lets d → integer n, we will get terms propor-
tional to(

Mφ

MV

)n+ε

=
(

Mφ

MV

)n(
1 + ε ln

(
Mφ

MV

)
+ . . .

)
.

In the complete expression, one will leave out terms of
O(ε), so that for an integer dimension, the expression for
the infrared part I (up to O(ε)) may well contain a piece
analytic in the Goldstone boson mass. Only after the sep-
aration in the two pieces of different analyticity character
has been done, it is allowed to let d approach an integer
value. This is why dimensional regularization, permitting
non-integer valued dimension parameters, is essential for
this approach. Note that an elegant extension of infrared
regularization to multi-loop graphs is given in [32].

6 Another case of IR regularization

The last section, where the infrared regularization scheme
has been introduced, dealt with the case that the momen-
tum squared q2, coming from outside the loop, was of the
same order as M2

V . This is the case, for example, for a di-
agram contributing to the self-energy of a nearly on-shell
baryon with a Goldstone boson loop. This was the case con-
sidered in [20]. However, we have seen in the last section
that vector mesons can occur as strongly virtual resonance
states in processes where only soft Goldstone bosons or
photons appear as external particles. If the same loop we
considered in the last section is connected only to Gold-
stone boson lines, the momentum flowing into the loop will
then be small. Since this is a Goldstone boson momentum,
we must require that the “regular part” which we want
to drop from the regularized amplitude is analytic also in
this parameter.

Becher and Leutwyler introduce in their original paper
the variable

Ω =
q2 − M2

φ − M2
V

2MφMV
(6.1)

which is O(1) for the processes they examine, which corre-
spond to the first of the two cases we distinguished in the
last section. They consider the chiral expansion for fixed
Ω. But if

|q2| 	 M2
V , q2 = O(p2),

the variable Ω will be O(p−1)! This already signals that
this case will probably have to be treated differently.

Let us first evaluate the integral directly, for d = 4− ε.
We find (omitting terms of O(ε))

IV φ

= −Md−4
V

(4π)
d
2

Γ

(
2 − d

2

)∫ 1

0
dz[b(z − x1)(z − x2)]

d
2 −2

= 2λ +
1

16π2 +
1

16π2

∫ 1

0
dz ln(b(z − x1)(z − x2))

= 2λ − 1
16π2

+
1

16π2

(
x1 ln

(
x1

x1 − 1

)
+ x2 ln

(
x2

x2 − 1

))
.

Here we have introduced the zeroes of C(z),

x1,2 =
b + a − 1

2b
±
√

(b + a − 1)2 − 4ab

4b2 , (6.2)

and the standard notation

λ =
Md−4

V

16π2

(
1

d − 4
− 1

2
(ln(4π) − γ + 1)

)
.

We have selected the mass of the heavy particle as a natural
choice for the renormalization scale µ here (this particular
choice also leads to suppression of higher order divergences
that appear in the loop integrals and should thus be made).
Furthermore we have used C(z = 1) = b(1−x1)(1−x2) =
1 . To examine this further we write the expansions

x1 = − a

1 − a
− ab

(1 − a)3
− . . . , (6.3)

1
x2

= − b

1 − a
− b2

(1 − a)3
− . . . , (6.4)

showing that, for b → 0, x2 behaves like

x2 → b + a − 1
b

.

Remember that in the case we consider now, a and b are
both small variables from their definition, of chiral order
O(p2). Using these expansions, and the relation

C(z = 0) = a = bx1x2,

we see that IV φ contains a term non-analytic in the Gold-
stone boson mass

IV φ =
1

16π2 x1 ln(a) + . . . ,

and that it is analytic in the second small variable b (for
|b| 	 1 ).

We want to check the power counting for this case: The
non-analytic terms are proportional to x1, whose expansion
in a and b starts at order O(p2). This is the expected
chiral order for the integral: The loop integration in four
dimensions gives four powers of small momentum, whereas
the Goldstone boson propagator gives −2. The hard pole
structure is of order O(1) here, because the vector meson
appears just as an internal resonance line. So the power
counting for the non-analytic terms is fine, as expected.

We remark that these non-analytic terms are also pro-
duced when one proceeds after the prescription of [19]:
Expanding the hard pole structure and integrating term
by term, one gets x1 as the coefficient of the ln a terms,
order by order.
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Now we want to do infrared regularization. But now we
remark an important point: We can not simply take over
the formulas of the last section. We note that the expression
for I and R will contain pieces non-analytic in the other
small variable b, which is not small in the case treated in
the last section. But the original integral does not contain
such a non-analyticity in b. We conclude that the extension
of the parameter integrals to z � 1 is responsible for this
non-analyticity: Somewhere in that region, we must catch
up a pole for b → 0. So we have the problem that, loosely
speaking, the “regular part” is not regular. We will have
to modify the method of [20] somehow, and find a way to
separate off the terms non-analytic in the small variable
b. To do this, we will have to examine the nature of the
singularity we encounter here. This will be done in the
next section.

7 Singularities in parameter space

We will consider an integral which has exactly the same
features as the one we need, but is a bit simpler. Let

Ĩ =
∫ 1

0
dz (z + a)− 3

2 (1 + bz)− 3
2 , (7.1)

where a and b are again small parameters in the sense that
|a|, |b| 	 1. This will develop a singularity at z = 0 if
a → 0. What if we extend the integration to infinity? To
examine this we first change variables,

z =
1
u

,

and compute

Ĩ =
∫ ∞

1
u du (1 + au)− 3

2 (u + b)− 3
2 . (7.2)

This shows the close similarity between the “a-singularity”
at z = 0 and the “b-singularity” at u = 0. If we extend
the integration to z → ∞, we will pick up a non-analytic
contribution from u = 0. A “regular part” defined as

R̃ = −
∫ ∞

1
dz (z + a)− 3

2 (1 + bz)− 3
2 (7.3)

will be analytic in a, but not in b. This is the situation en-
countered in the last section, for a slightly different integral.
How do we get rid of this non-analyticity?

Remembering what we have learned so far, we know
how we can get rid of certain non-analytic terms: We must
“destroy the poles” by expanding the pole structures and
integrating term by term. Let us do this:

Ĩ =
∫ 1

0
dz(z + a)− 3

2

(
1 − 3

2
bz +

15
8

(bz)2 ± . . .

)

=
∫ 1

0
dz(z + a)− 3

2

∞∑
m=0

Γ
(− 1

2

)
Γ
(− 1

2 − m
) (bz)m

m!

=
∞∑

m=0

Γ
(− 1

2

)
Γ
(− 1

2 − m
) bm

m!

∫ 1

0
dz(z + a)− 3

2 zm.

Here we were allowed to interchange summation and inte-
gration without changing the value of the integral, because
in the interval of integration the expansion of the integrand
is absolutely convergent when a, b are smaller than 1.

The dependence on anow resides in the simpler integrals
of the coefficients in the expansion. The idea is now to find
the “infrared singular part” of each of these coefficients. If
the sum of these infrared singular parts converges, it must
be the infrared singular part of the full integral Ĩ, because
the expansion of the pole structure that we have performed
did not change the integral.

To find the infrared singular part of

Im =
∫ 1

0
dz(z + a)dzm (7.4)

with an arbitrary parameter d (possibly negative) and an
integer m, we follow the method of [20] and scale z = ay
to find

Im = ad+m+1
∫ 1

a

0
dy (1 + y)dym. (7.5)

We would now like to take the upper limit of the integra-
tion to infinity. Whenever the extended integral converges,
it gives∫ ∞

0
dy (1 + y)dym =

Γ (m + 1)Γ (−d − (m + 1))
Γ (−d)

.

There will be a convergence problem if m is large enough.
But the divergence comes from large values of z and has
nothing to do with the infrared singular part. To see this
in detail, let K � 1 , m > 0, and do a partial integration:∫ K

0
dz (z + a)dzm

= Km (K + a)d+1

d + 1
−
∫ K

0

m

d + 1
(z + a)d+1zm−1 dz.

Doing this m times, and dropping all terms proportional
to (K + a)d+n with n ∈ N , because these are clearly
expandable around a = 0 and will therefore not contribute
to the piece non-analytic in a, we end up with the same
result as above, namely, the “infrared singular part” of Im

is always

Im,IR = ad+m+1 Γ (m + 1)Γ (−d − (m + 1))
Γ (−d)

. (7.6)

This form clearly shows the character of the infrared sin-
gular part as being proportional to non-integer powers of
a for non-integer parameter d.

We have now performed the relevant step to find the in-
frared singular part of each coefficient in the expansion of Ĩ.
We insert this in the series, setting d = − 3

2 for definiteness:

Ĩ =
∞∑

m=0

Γ
(− 1

2

)
Γ
(− 1

2 − m
) bm

m!

∫ 1

0
dz (z + a)− 3

2 zm
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→
∞∑

m=0

Γ
(− 1

2

)
Γ
(− 1

2 − m
) Γ (m + 1)Γ

( 1
2 − m

)
Γ
( 3

2

) (ab)ma− 1
2

m!

= ĨIR.

One can easily sum the series:

ĨIR =
4√
a

∞∑
m=0

(ab)m

(
(m + 1) − 1

2

)

=
4√
a

(
1

(1 − ab)2
− 1

2(1 − ab)

)

=
2√
a

1 + ab

(1 − ab)2
.

The reason why we have selected the value d = − 3
2 is that

it is very easy to compute the integral Ĩ directly. The part
non-analytic at a → 0 can be read off and is the same as
the result just given. We have checked this for various other
values of the parameter d.

In a “naive” application of the IR method, one would
be tempted to simply take

ĨBL =
∫ ∞

0
dz (z + a)− 3

2 (1 + bz)− 3
2

=
2

(1 − ab)2

(
1 + ab√

a
− 2

√
b

)
,

which contains a part non-analytic in the second small vari-
able b. This is the part we have separated off by our pro-
cedure.

We note that this “b-singular” part can be extracted by
proceeding in exact analogy to the steps just performed:
Expand the other pole structure, proportional to a power
of (z + a), in the integral R̃, (7.3). The expansion is in
powers of a/z, which is smaller than one in the pertinent
interval of integration.

We can now give the result for arbitrary d. The general
“a-singular part” is

ĨIR =
∞∑

m=0

Γ (d + 1)Γ (−d − (m + 1))
Γ (−d)Γ (d + 1 − m)

(ab)mad+1, (7.7)

while the “b-singular part” is

Ĩb =
∞∑

m=0

Γ (d + 1)Γ (m − 2d − 1)
Γ (−d)

(ab)m

m!
b−(d+1). (7.8)

In the case d = − 3
2 , the last expression yields indeed

Ĩb =
∞∑

m=0

Γ
(− 1

2

)
Γ
( 3

2

) (m + 1)(ab)m
√

b =
−4

√
b

(1 − ab)2
,

which is confirmed by the result of the direct calculation.
We have

ĨBL = ĨIR + Ĩb, (7.9)

where the second part is the one we do not want in a genuine
regular part (it will appear in R̃ because the non-analytic

behaviour for b → 0 is not present in the original integral
Ĩ, with which we started).

What we will need in the next section is the result
for d = −ε, where, as always, ε is considered as sufficiently
small to allow for the neglecting of terms O(ε2). In this case,

ĨIR =
∞∑

m=0

Γ (1 − ε)Γ (−(m + 1) + ε)
Γ (ε)Γ (1 − m − ε)

(ab)ma1−ε . (7.10)

After some Γ -function algebra, one gets for the sum

ĨIR = a1−ε(−1 − ε) − ε

∞∑
m=1

a(ab)m

m(m + 1)
+ O(ε2)

= a(−1 − ε + ε ln(a))

−εa

∞∑
m=1

(
1
m

− 1
m + 1

)
(ab)m + O(ε2).

The series can easily be summed:

ĨIR = −a−2εa+ εa ln(a)+ ε

(
ab − 1

b

)
ln(1−ab). (7.11)

Please note that the last term is expandable in b, and that
we have left out terms of O(ε2).

With the very same method, we can also compute the
“b-singular part” for the case d = −ε. The result is

Ĩb =
1
2

(
a − 1

b

)
+

1
2

ε

(
a − 1

b

)
ln(b)

+ε

(
1 − ab

b

)
(ln(1 − ab) − 1). (7.12)

We have checked that ĨBL, calculated with the method of
Becher and Leutwyler, is again the sum of the “a-singular
part” and the “b-singular part”, like it was the case for
d = − 3

2 .
We have now achieved a method which allows one to

split integrals of the form of ĨBL into an “infrared singular
part”, behaving non-analytically as a → 0, and a part show-
ing such behaviour for b → 0. Note that this decomposition
is unique, and that both parts are of a different analyticity
character (for fractional d), concerning the small parame-
ters a and b, respectively. In the next section, we will see
how this method can be applied to the scalar loop integral
IV φ.

8 Corrected infrared singular part

The integral we need for the calculation of IV φ is

I =
∫ 1

0
dz (b(z − x1)(z − x2))

d
2 −2.

Extracting a factor

(−bx2)
d
2 −2 = (1 − (a + b) + . . .)

d
2 −2,
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from the integral, which is expandable in a and b, the
remainder is of the form of Ĩ treated in the last section,
because x1 and x−1

2 are small parameters of O(p2):

I = (−bx2)
d
2 −2Ĩ ′,

where

Ĩ ′ =
∫ 1

0
dz (z + (−x1))

d
2 −2(1 + (−x2)−1z)

d
2 −2.

Doing the appropriate substitutions in (7.12), the infrared
singular part of I becomes

IIR = x1 + εx1 − ε

2
x1 ln(a) − ε

2
(x1 − x2) ln

(
1 − x1

x2

)
,

(8.1)
where we have used a = bx1x2. For completeness, we also
rewrite the “b-singular part”:

Ib =
x2 − x1

2
− ε

4
(x2 − x1) ln(bx2

2)

+
ε

2
(x2 − x1)

(
1 − ln

(
1 − x1

x2

))
. (8.2)

As a check, we add it to the infrared singular part:

IIR + Ib = z0

(
1 + ε − ε

2
ln(a)

)
− ε

4
(x1 − x2) ln

(
x1

x2

)
.

(8.3)
Here we have used the notation

z0 =
x1 + x2

2

as in [20]. Again, the sum of the “a-singular part” and the
“b-singular part” is the result for the integral∫ ∞

0
dz(b(z − x1)(z − x2))− ε

2

when computing it utilizing standard IR. But the correct
infrared singular part for our case is only a certain part of
it, namely, IIR.

The part which must be split off here, Ib, vanishes if

x1 = x2 ⇒ (b + a − 1)2 − 4ab = 0,

(see (6.2)), which is the case for

q2 = (MV ± Mφ)2 ≡ q2
±.

We cannot trust our procedure for q2 > M2
V . Therefore the

value q2
− should be considered as the point where the stan-

dard infrared singular part of [20] and the representation
given here, i.e. IIR, can be joined together.

We emphasize that the kind of argument we have given
here is completely in the spirit of the method of Becher
and Leutwyler, in that we examined the analyticity prop-
erties of the parameter integrals for a general dimension
parameter d.

The calculation of the infrared singular part of the scalar
loop integral IV φ can now be completed:

IIR
V φ = −Md−4

V

(4π)
d
2

Γ

(
2 − d

2

)
IIR

= 2x1λ (8.4)

− 1
16π2

(
x1 − x1 ln(a) − (x1 − x2) ln

(
1 − x1

x2

))
.

Terms of O(ε) have been omitted. We claim that the dif-
ference

R′ ≡ IV φ − IIR
V φ

is the appropriate regular part. This means that it is ex-
pandable in the small parameters a and b around zero. The
proof consists of two observations.
(1) Both IV φ and IIR

V φ contain the same terms non-analytic
in a, namely,

1
16π2 x1 ln(a).

The difference is therefore expandable in a.
(2) IV φ was expandable in b from the start, whereas IIR

V φ is
expandable in b by construction. Therefore the difference
is of course also expandable in b.

Moreover, R′ is unique, because we extracted exactly
the part of IV φ proportional to fractional powers of a for
fractional dimension parameter d. We conclude that R′ is
a well-defined regular part, and that it can be absorbed in
a renormalization of the LECs of the effective Lagrangian.

We add the remark that the expansion of (8.4) is re-
produced by using the procedure of [19], i.e. expanding the
“hard pole structure” and interchanging summation and
integration. We have checked this to order O(p8), but a
formal proof that it will give the same result to all orders
is still missing. It seems that both procedures are indeed
consistent (remember, however, the remarks made at the
end of Sect. 4). This means that the “low-energy-portion”
of loop integrals is, in this sense, unambiguous. This re-
sult is not really surprising: From the arguments of Sect. 4,
it is seen that an integral like Isoft (see (4.2)) is a pure
“soft pole” integral, i.e. only involving the pole structure
associated with the Goldstone boson propagator, and thus
having no regular part, while an integral like Ihard is reg-
ular in the Goldstone boson mass, and does not contain
fractional powers of Mφ for any choice of the dimension
parameter d.

9 Goldstone boson self-energy

Wearenow ready to compute the vectormeson contribution
of the Goldstone boson self-energy. We consider first the
novel type of diagrams where the heavy mass line appears
in the loop; see Fig. 1b. We get for this amplitude

12iG2
V

F 4 δabIΣ , (9.1)
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using the notation

IΣ(q) (9.2)

= i
∫

ddk

(2π)d

q2k2 − (q · k)2

(k2 − M2
V + iε)((k − q)2 − M2

φ + iε)
.

This integral may be decomposed in a linear combination
of scalar loop integrals by standard techniques:

IΣ = cφIφ + cV IV + cV φIV φ, (9.3)

where the coefficients ci are given by

cφ =
q2 + M2

φ − M2
V

4
,

cV =
q2 − M2

φ + M2
V

4
,

cV φ =
4q2M2

V − (q2 − M2
φ + M2

V )2

4
, (9.4)

while the scalar loop integrals are defined as

Iφ = i
∫

ddk

(2π)d

1
k2 − M2

φ + iε

= 2M2
φλ +

M2
φ

16π2 ln(a), (9.5)

IV = i
∫

ddk

(2π)d

1
k2 − M2

V + iε

= 2M2
V λ, (9.6)

and the scalar loop integral IV φ is defined in (5.1). We
repeat the remark that we use µ = MV for the renormal-
ization scale.

What power would we like to have for this self-energy
amplitude? We have one loop integration, two vertices of
order O(p2) and one Goldstone boson propagator. The
vector meson propagator is counted as O(1) here, since the
vector meson line is not connected to any external heavy
particle lines. So we end up with the “expected” power

D(Σ) = 4 + 2 × 2 − (2 + 0) = 6,

using (1.2). The word “expected” was used from a naive
point of view, because we are already sophisticated enough
to expect that the “hard pole structure” associated with
the vector meson propagator will give the loop integral a
high-energy contribution that spoils the power counting.

Indeed, using the decomposition in scalar loop integrals
and the expansions of the variables x1 and x2 given in
(3.10) and (3.11), respectively, it is straightforward to see
that IΣ contains the following terms which violate the
power counting:

IΣ =
1
4

M4
V

(
λ(6b − 2b2 + 6ab) +

1
16π2

(
b

2
+

ab

2
− 5

6
b2
))

+ . . . ,

where the dots stand for terms satisfying the power count-
ing, i.e. they are of order O(p6) or higher.

To find the “infrared singular part” of IΣ , it is sufficient
to find the infrared singular part of each of the scalar loop
integrals. This is because the coefficients ci do not contain
any fractional powers of Mφ for any dimension parameter d.

The infrared singular part of IV φ has been computed
in the last section. The integrand of IV is a pure hard pole
structure without any dependence on a small parameter
like a or b, and will therefore not have an infrared singular
part. Finally, the integral Iφ is proportional to a fractional
power of Mφ, as a direct calculation using dimensional
regularization shows, so it has no regular part (it does not
contain a hard pole structure which could be expanded).
The “infrared regularized” self-energy amplitude is thus

IIR
Σ =

12iG2
V

F 4 δab(cφIφ + cV φIIR
V φ), (9.7)

where IIR
V φ is given in (8.4). Using the expansions of the xi

and ln(1 − y) = −y − y2/2 − . . . (|y| < 1), it can easily be
checked that the “infrared regularized” amplitude obeys
power counting.

Before we go on and apply our modified version of in-
frared regularization to other graphs, we want to mention
one more thing. Using the vector field approach, cf. Ap-
pendix Appendix B:, the self-energy graph leads to the ex-
pression

12iG2
V

M2
V F 4 δabI ′

Σ ,

where now

I ′
Σ = i

∫
ddk

(2π)d

k2(k2q2 − (k · q)2)
(k2 − M2

V + iε)((k − q)2 − M2
φ + iε)

.

Subtracting the amplitude computed in the vector field
approach from the amplitude computed in the tensor field
approach, we get

A(W ) − A(V ) =
12iG2

V

M2
V F 4 δab

×i
∫

ddk

(2π)d

(M2
V − k2)(k2q2 − (k · q)2)

(k2 − M2
V + iε)((k − q)2 − M2

φ + iε)

=
12G2

V

M2
V F 4 δab

∫
ddk

(2π)d

k2q2 − (k · q)2

(k − q)2 − M2
φ + iε

.

But this is the same result as one would get for a self-
energy diagram where the vector meson line is replaced by
a contact term interaction

G2
V

8M2
V

〈[uµ, uν ][uµ, uν ]〉,

leading to a four-φ interaction

− G2
V

M2
V F 4 fabkfcdk∂µφa∂νφb∂µφc∂νφd.
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Fig. 2. Triangle graph as it contributes e.g. to the pion vec-
tor form factor. Solid, dashed and wiggly lines denote vec-
tor mesons (heavy particles), Goldstone bosons and external
sources (fields), respectively

This confirms the “duality” between the vector and the
tensor field approach [15]. Note that this result does not
depend on the regularization scheme – it was derived with-
out even computing the integrals. Since the difference of
the amplitudes is a pure “soft pole” Goldstone boson loop
diagram, we see that the “hard part” (i.e. the regular part)
is representation independent. In particular, both descrip-
tions produce the same power counting violating terms.

10 Triangle graph

There is one more one-loop diagram of O(p6) where the
vector meson line shows up as a loop line: the triangle
diagram of Fig. 2. One gets the following expression for the
triangle graph:

A∆ =
6G2

V

F 4

(
fab3 +

1√
3

fab8
)

Iτ
∆, (10.1)

where the integral is

−i Iτ
∆(p, p + k) =

∫
ddq

(2π)d
(10.2)

((2p + k) − 2q)τ (p · (p + k)q2 − (p · q)((p + k) · q))
(q2 − M2

V )((q − p)2 − M2
φ)((q − p − k)2 − M2

φ)
.

A decomposition of Iτ
∆ as a linear combination of scalar

loop integrals is given in Appendix Appendix D: (for the
Goldstone boson momenta on mass shell). What concerns
us here is the question how the infrared singular part of
this integral can be obtained. The decomposition in scalar
loop integrals contains an integral we have not yet treated,
namely

IV φφ(p, p + k) ≡
∫

ddq

(2π)d
(10.3)

i
(q2 − M2

V )((q − p)2 − M2
φ)((q − (p + k))2 − M2

φ)
.

Fortunately, it is possible to reduce the problem of find-
ing the infrared singular part of this integral to the case
we have already examined. The procedure can in full gen-
erality be found in Sect. 6.1 of [20]. We show how this
works in the above example: Introducing one more Feyn-
man parametrization, we write IV φφ as∫

ddq

(2π)d

i
q2 − M2

V

∫ 1

0
dw

∂

∂M2
φ

1
(1 − w)((q − p)2 − M2

φ) + w((q − (p + k))2 − M2
φ)

=
∫

ddq

(2π)d

i
q2 − M2

V

∫ 1

0
dw

∂

∂M2
φ

1
(q − (p + wk))2 − (M2

φ − k2w(1 − w))
.

The momentum integral is now of the form of IV φ, with
the operator

∆(. . .) ≡
∫ 1

0
dw

∂

∂M2
φ

(. . .) (10.4)

acting on it. We can insert our result for IIR
V φ, with the sub-

stitutions

a =
M2

φ

M2
V

→ M2
φ − k2w(1 − w)

M2
V

= a′, (10.5)

b =
p2

M2
V

→ (p + wk)2

M2
V

= b′. (10.6)

Please note that the external Goldstone boson momentum
is now called p instead of q. Also note that the new variables
a′ and b′ are also of O(p2), which allows one to take over
the treatment of infrared regularization presented in the
foregoing sections.

We must show that the operator ∆ does not disturb the
properties of infrared singularity and power counting. The
“dangerous” part of this operator is the derivative with
respect to M2

φ, since it changes the chiral order. It is clear
from the above definitions that (for fixed k2)

M2
V

∂

∂M2
φ

=
∂

∂a
=

∂

∂a′ .

We know from the derivation of the infrared singular part
that it can be written in the general form

IIR
V φ(a′, b′) = (a′)

d
2 −1

∞∑
m=0

∞∑
n=0

cmna′mb′n

with some numerical coefficients cmn that depend only on
the dimension d. For d → 4, this gives the correct order
O(p2) for IIR

V φ. Letting the operator∆ act on this expression,
we get

IIR
V φφ = ∆IIR

V φ(a′, b′) (10.7)

=
∫ 1

0
dw

1
M2

V

∂

∂a′

(
(a′)

d
2 −1

∞∑
m=0

∞∑
n=0

cmna′mb′n
)

=
∫ 1

0
dw (a′)

d
2 −2

∞∑
m=0

∞∑
n=0

(
d

2
− 1 + m

)
cmna′mb′n.

This shows that the expansion of the thus defined infrared
singular part of IV φφ starts with Md−4

φ , as one expects for
such an integral by simple power counting. We learn from
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the last expression that, in principle, it is sufficient to know
the chiral expansion of IIR

V φ to arrive at the chiral expansion
of IIR

V φφ. The only problem for practical calculations is that
the parameter integrals over w are not at all of a simple
form, because a′, b′ and therefore also x′

1 and x′
2, defined

in analogy to (3.9), are non-trivial functions of w.
For d → 4, IIR

V φφ is

∫ 1

0
dw

1
M2

V

× ∂

∂a′

(
2x′

1λ

− 1
16π2

(
x′

1 − x′
1 ln(a′) − (x′

1 − x′
2) ln

(
1 − x′

1

x′
2

)))

=
∫ 1

0

dw

M2
V

(
2y1λ − 1

16π2 (y1 − y1 ln(a′)

− x′
1

a′ − (y1 − y2) ln
(

1 − x′
1

x′
2

)
− y1x

′
2 − y2x

′
1

x′
2

))
,

where we defined

y1,2 =
∂

∂a′ x
′
1,2 =

1
2b′

(
1 ± b′ − a′ − 1√

(b′ + a′ − 1)2 − 4a′b′

)
.

The singularity structure of IV φφ is richer than the one
of IV φ because by the definition of a′, a term like ln(a′)
not only contains the infrared singularity for Mφ → 0, but
also a cut for k2 = t > 4M2

φ, which is associated with the
two-Goldstone boson production threshold.

The important point is that, having the prescription for
IV φ, we can find the infrared singular part of any loop inte-
gral where a small momentum of order O(p) flows through
the heavy particle line(s) (this is the case we have treated
in this paper) or where a nearly on-mass-shell heavy par-
ticle is involved (in which case the results of [20] can be
used directly). The principle is now well understood, but
practical calculations will be difficult for complicated dia-
grams, because one needs a parameter integration for every
pair of propagators which are combined to one (parameter-
dependent) pole structure. An example for this has been
shown in the treatment of IV φφ. As another point, the de-
composition of a complicated loop integral involving a lot
of vertices in a decomposition in scalar loop integrals will
be lengthy and complicated. But these are no conceptual
problems any more. The conceptual problem of the power
counting violating terms has been solved by dropping the
regular parts of all loop integrals, retaining the infrared
singular parts that stem from the region where the loop
momentum is O(p). As a further consequence, many dia-
grams, namely those where the loops are formed of heavy
particle lines only, can be dropped from the start because
the respective loop integrals will only contain “hard pole”
structures and do not lead to an infrared singular part.
Using this scheme, we can proceed and treat all kinds of
diagrams where heavy resonances (not only vector mesons)
occur in loops, and whose momenta are to be counted as

either nearly on-shell or O(p) by the perturbative scheme
of power counting. We finally remark that the treatment of
the vector meson loop graphs in the analysis of the nucleon
electromagnetic form factors performed in [31] is consistent
with the procedure we have established.

11 Vector meson self-energy graph

In the last section we have considered diagrams where the
vector meson shows up as a strongly virtual intermediate
state, with a small momentum flowing through the vector
meson line. We found the “infrared singular” part of the
corresponding amplitude, and we saw that it was necessary
to modify the method of [20], where all particles in the in-
termediate state where considered as being close to their
respective mass shell. It is now natural to ask: What hap-
pens if the “light” particles (the Goldstone bosons) are far
from their mass shell? In principle, the “hard momentum
part” of the pionic intermediate states has been integrated
out in the effective theory. But in analogy to the case of the
treatment of the “heavy” vector meson in the last section,
it might be useful to take these degrees of freedom into
account in a systematic fashion, because in this way one
sums up (infinitely many) higher order graphs. We will
encounter such a situation in the following section.

11.1 One more case of IR regularization

In Fig. 3 we show a graph contributing to the vector me-
son self-energy. In the case where there is a “small” (O(p))
momentum flowing through the vector meson line, the cor-
responding amplitude would be a homogeneous function of
small parameters (external momentum and quark masses),
since the large scale (in this case, the vector meson mass)
does not show up in the loop line propagators and thus can-
not produce a “hard pole” contribution. The loop integral
is the same as in the Goldstone boson sector, and there-
fore has no “regular part”. When computing self-energy
contributions, one is usually interested in the case where
the external momentum P is close to the mass shell of the
corresponding particle. This leads to the appearance of the
large scale in the denominator of the integrand of the loop
integral, and we expect a power counting violating contri-
bution stemming from a “hard pole” of the integrand. The
integral will develop a regular part in the terminology of
Becher and Leutwyler.

We start our analysis for the case P 2 � M2
φ with the

question: What is the “soft part” of a diagram like Fig. 4.1?

P

P − k

k

Fig. 3. The vector meson self-energy diagram with a pure
Goldstone boson loop. Solid (dashed) lines denote vector mesons
(Goldstone bosons)



110 P.C. Bruns, U.-G. Meißner: Infrared regularization for spin-1 fields

That is, which region of the loop momentum integration
produces the infrared singular part? Obviously, the case
where both Goldstone boson propagators are of O(p−2)
is excluded by four-momentum conservation at the two
vertices. The region where both Goldstone boson lines are
far from their mass shell is a pure “hard momentum effect”
and thus belongs to the “regular part”. The soft part can
only come from the region of the loop integration where
one line is soft (i.e. it carries an O(p)-momentum), and the
other Goldstone boson line carries the large momentum P
and is thus far from its mass shell.

As an illustration of this argument, let us first try to
extract the “soft pole contribution” following the method
of [19]. We examine the scalar loop integral

I = i
∫

ddk

(2π)d

1
(k2 − M2

φ)((k − P )2 − M2
φ)

. (11.1)

Following the above reflections and the receipt of [19], we
treat the momentum of one line as “soft” and expand the
propagator associated with the other line. Then we inter-
change integration and summation of the series, thereby
“destroying the hard pole”:

I → i
∫

ddk

(2π)d

1
k2 − M2

φ

1
P 2

∞∑
n=0

(2P · k + M2
φ − k2)n

(P 2)n

= i
∫

ddk

(2π)d

1
k2 − M2

φ

1
P 2

∞∑
n=0

(2P · k)n

(P 2)n

→
∞∑

n=0

i
(P 2)n+1

∫
ddk

(2π)d

(2P · k)n

k2 − M2
φ

=
1
2

Isoft.

The factor of 1
2 appears due to the fact that the full soft part

also includes the part where the other line (with momentum
P − k) is considered as “soft”. Of course this part is equal
to the above result due to the symmetry of the graph. We
note further that it is not legitimate to resum the series in
the above result to get

I ′ = i
∫

ddk

(2π)d

1
(k2 − M2

φ)(P 2 − 2k · P )

= i
∫

ddk

(2π)d

∫ ∞

0
dz

× 1
[(k2 − M2

φ)(1 − z) + z((k − P )2 − M2
φ)]2

= −i
∫

ddk

(2π)d

∫ ∞

1
dz

× 1
[(k2 − M2

φ)(1 − z) + z((k − P )2 − M2
φ)]2

.

This contains a “hardpole” contribution andwill not satisfy
the power counting scheme, which requires the scalar loop

integral to be O(pd−2), because only one Goldstone boson
propagator is booked as O(p−2), while the other Goldstone
boson must be far off its mass shell (its momentum must be
of the order of P by momentum conservation). To repeat,
this power counting is strictly valid only for the “soft pole”
part of the integral, which we have identified as Isoft.

The alert reader will note that the result Isoft corre-
sponds to a series of tadpole graphs, involving only one
Goldstone boson propagator. This can of course not be
the whole story, because the amplitude of Fig. 3 has an
imaginary part due to the production of two Goldstone
bosons in the intermediate state, while the tadpole sum
does not have such an imaginary part. In order to take only
Isoft as the regularized amplitude, one would have to write
complex coefficients in the effective Lagrangian, which we
do not want. A direct calculation of the full scalar loop
integral shows that the imaginary part does not satisfy the
power counting mentioned above. This is related to the
fact that for large P 2 of the heavy external particle, the
Goldstone bosons produced in the decay of this particle
are not to be considered as “soft”. Below the threshold,
we have P 2 < 4M2

φ, so P 2 cannot be considered as being
very large compared to the scale M2

φ in that region, and
we would have to take the full integral I as the soft part,
and not Isoft. This phenomenon of the “missing imaginary
part” is consistent with the findings of [25], where this was
noted using the heavy vector meson approach. We will not
discuss this further at this point and turn to the scheme of
infrared regularization. Doing the usual steps, we obtain

I = −Γ
(
2 − d

2

)
(4π)

d
2

(P 2)
d
2 −2

∫ 1

0
dz(D(z))

d
2 −2, (11.2)

where

D(z) = z2 − z +
M2

φ

P 2 . (11.3)

Motivated by the remarks made in the last paragraph, we
will consider the case that P 2 > 4M2

φ. This is fulfilled
for the case we are interested in, where P 2 is close to the
physical vector meson mass squared, and Mφ is the mass
of the particles we consider as Goldstone bosons.

Obviously, fractional powers of Mφ are produced in the
parameter regions where

z2 − z = 0 ⇒ z = 0 or z = 1,

corresponding to the fact that either one or the other Gold-
stone boson line in the loop carries soft momentum. In ac-
cord with the procedure of Sect. 6 (cf. (6.2)), we introduce
the zeroes of D(z),

d1,2 =
1
2

(1 ∓ σ),

σ =

√
1 − 4M2

φ

P 2 . (11.4)

Note that σ ∈ R and

0 < d2 − d1 = σ ≤ 1.
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We can simplify our analysis by “folding” the parameter
interval symmetrically,

∫ 1

0
dz(D(z))

d
2 −2 = 2

∫ 1
2

0
dz(D(z))

d
2 −2,

allowing us to expand the pole due to the zero d2 > 1
2 :

∫ 1

0
dz(D(z))

d
2 −2

=
∫ 1

0
dz(z − d1)

d
2 −2(z − d2)

d
2 −2

= 2
∞∑

m=0

(−d2)
d
2 −2−m 1

m!
Γ
(

d
2 − 1

)
Γ
(

d
2 − 1 − m

)
×
∫ 1

2

0
(z − d1)

d
2 −2zmdz.

We did not yet change the value of the parameter integral.
To find the “infrared singular” part of the parameter inte-
gral in the last line, we note that d1 is proportional to M2

φ

and of O(p2), and shift the integration variable to write

∫ 1
2

0
(z − d1)

d
2 −2zmdz

=
∫ 0

−d1

z
d
2 −2(z + d1)mdz +

∫ 1
2 −d1

0
z

d
2 −2(z + d1)m dz.

Terms proportional to d
d
2
1 will only be produced by the first

term on the right-hand side (remember m ∈ N). Scaling
the variable of integration with d1, it takes the form

∫ 0

−d1

z
d
2 −2(z + d1)mdz

= (−1)m+1(−d1)
d
2 −1+m

∫ 1

0
t

d
2 −2(1 − t)mdt

= (−1)m+1(−d1)
d
2 −1+m Γ

(
d
2 − 1

)
Γ (m + 1)

Γ
(

d
2 + m

) ,

where we substituted z = −td1.
The “infrared singular part” of I is thus

IIR = − 2Γ
(
2 − d

2

)
(P 2)

d
2 −2

(4π)
d
2

(11.5)

×
∞∑

m=0

(−1)m(d1)
d
2 −1+m(d2)

d
2 −2−m

(
Γ
(

d
2 − 1

))2
Γ
(

d
2 − 1 − m

)
Γ
(

d
2 + m

) .

This expansion starts with d
d
2 −1
1 ∼ Md−2

φ and obeys low-
energy power counting. The series could be summed up,
but this is not necessary. Reviewing what we have done so
far, it becomes clear that we have just selected a certain

range of integration which produces the fractional powers
of Mφ. This step may be symbolized by

I =
∫ 1

0
dz(. . .) →

∫ d1

0
dz(. . .) +

∫ 1

d2

dz(. . .)

= 2
∫ d1

0
dz(. . .) = IIR. (11.6)

Applying this to I with d = 4 − ε, we find

IIR = 4d1λ (11.7)

+
1

16π2

(
−2d1 + ln(a) + σ ln

(
1 + σ

1 − σ

)
− 2σ ln(σ)

)
,

while the “regular part” is

I −IIR = (2−4d1)λ+
1

16π2

(
−(1−2d1)+2σ ln(σ)− iπσ

)
,

(11.8)
which is indeed expandable in M2

φ for P 2 > 4M2
φ. We

have again used MV for the renormalization scale, and the
variable a defined in (5.3).

It may be checked by expanding d1 and σ in powers
of M2

φ that the infrared singular part indeed satisfies the
power counting rules, and also that

IIR = Isoft.

We have already remarked in the last section that the low-
energy part of a loop integral is unambiguously defined in
this sense.

The imaginary part of the scalar loop integral I is

−iσ
16π

,

whose chiral expansion starts O(1) and therefore does not
obey the power counting rules. But it cannot be subtracted
from the full amplitude since it is not real. The correspond-
ing width of the vector meson due to its possible decay into
a pair of Goldstone bosons cannot simply be neglected. In
principle, one should give the denominator of the vector
meson propagator an imaginary part to deal with this fact.

The result of (11.7) is valid above the two-Goldstone-
boson threshold. At P 2 = 4M2

φ, the “regular part”, (11.8),
vanishes, and remains zero below the threshold, since as we
remarked above the integral I then has no regular part and
is completely “infrared singular”. The two representations
for the infrared singular part, valid for different ranges of the
parameter P 2, may be “joined together” at the threshold
singularity. A similar thing happened in the last section
for the two representations of the infrared singular part of
the scalar loop integral IV φ.

11.2 Application to the self-energy

The major problem in finding the “soft part” of the am-
plitude of Fig. 3 has been solved in the last paragraph.
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For the full expression, we need to add some vertex struc-
ture from the local effective Lagrangian. We choose to
work with the interaction Lagrangian of (2.11) and refrain
from constructing interaction terms with a higher num-
ber of derivatives, though not all momenta in the present
problem can be considered as “soft”. Since the coupling
constant GV may be measured from ρ-meson decay, where
the Goldstone bosons are also not of soft momentum, this
can be seen as a valid approximation. Applying the usual
Feynman rules, we obtain

(−i)Σµν,ρσ
V =

1
2

G2
V

F 4 fabcf bad (11.9)

×
∫

ddk

(2π)d

(kµP ν − kνPµ)(P ρkσ − Pσkρ)
(k2 − M2

φ)((k − P )2 − M2
φ)

.

Before further evaluating this, we have to discuss the power
counting. The vertices are both of the order O(p), since only
one momentum in the product k ·P is a small momentum in
the sense of the power counting scheme. Remembering the
discussion of the last paragraph, we want the amplitude to
be of “chiral order” d+1+1−2 = d. We will see that the in-
frared regularized amplitude will indeed respect this power
counting. Using the tensor integral of Appendix Appendix
D:, we get

Σµν,ρσ
V (11.10)

=
3G2

V

2F 4 δcdPµν,ρσ 1
d − 1

(
1
2

Iφ +
1
4

(4M2
φ − P 2)I

)
.

Here I is the scalar loop integral of (11.1), and we defined

Pµν,ρσ = gµρP νPσ − gµσP νP ρ − (µ ↔ ν). (11.11)

The infrared regularized amplitude is obtained from (11.9)
by simply letting I → IIR. The infrared part IIR was of
O(pd−2). In order to check that the terms of O(pd−2) cancel
in the soft part of (11.9), it is easiest to use that the first
term in the chiral expansion of IIR is also the first term of
the series for Isoft, which was given in Sect. 11.1:

Isoft =
2

P 2 Iφ + . . .

Inserting this in (−i)Σµν,ρσ
V,IR , that is the infrared part of

(11.9), it is clearly seen that the infrared part of the am-
plitude is indeed of order O(pd), as required by low-energy
power counting.

11.3 Contributions to the vector meson mass

First we introduce some notation. We define

1 ≡ 1µν,ρσ =
1
2

(gµρgνσ − gµσgνρ). (11.12)

Furthermore, we write

P ≡ Pµν,ρσ;

see (11.11). It is easy to calculate

1 · 1 = 1, 1 · P = P,

P · 1 = P, P · P = 2P 2P ,

where the multiplication works as e.g.

1µν,αβ · Pαβ,ρσ = Pρσ
µν .

The tensor field propagator may then be written

D =
i

M2
V

(
21 +

P
M2

V − P 2

)
, (11.13)

while its inverse (in the sense of the above multiplication)
is

D−1 =
1
i

(
M2

V

2
1 − 1

4
P
)

. (11.14)

The one-particle irreducible self-energy amplitude may be
parametrized as

Σ =
M2

V

2
A1 − B

4
P, (11.15)

where A and B are scalar functions of P 2 and the me-
son masses.

The procedure is now standard: Summing over the num-
ber of self-energy insertions, we find that the full propagator

Dfull = D + D(−i)ΣD + . . .

is given by

Dfull = (D−1 + iΣ)−1 (11.16)

=
i

M2
V (1 − A)


21 +

P

M2
V

(
1−A
1−B

)
− P 2


 .

We have to look for the poles of this expression. Since A
is a small perturbation of O(p2), the only pole will be at

P 2 = M2
V

(
1 − A

1 − B

)
= M2

V,ph, (11.17)

with MV,ph the physical mass of the vector meson. Before
we use this formula to compute the contribution of Fig. 3 to
the vector meson mass, let us make a very rough estimate
of the expected size of the contribution. The most general
effective Lagrangian for the tensor field contains a term

c〈WµνWµνχ+〉,
yielding, among other terms, a contact term contribution
of O(p2), which gives rise to a shift of the propagator pole:

M2
V → M2

V + 8cM2
φ.

Since the coupling constant c is not known, for the pur-
pose of our estimate we make a naturalness assumption
concerning this coupling, and set c = 1, which gives us
a value of 100 MeV for the mass shift. If power counting
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is a consistent perturbative scheme here, we would ex-
pect for an O(p4) correction a number of size of roughly
(M2

φ/M2
V )(100 MeV) ∼ 3 MeV (for the pion contribution).

Now let us compare this estimate with the (infrared regular-
ized) amplitude corresponding to Fig. 3. It will contribute
to B, defined above, with

BV = − 6G2
V

F 4

(
1
6

Iφ +
4M2

φ − M2
V

12
IIR (11.18)

+
1

144π2 (d1M
2
V − (1 + 4d1)M2

φ)

)
,

giving a mass shift of 1.2 MeV, which is really only a small
correction, and also of the size expected by the (very rough)
estimate made above. If we had used the full (real part of)
the integral I, we would get a result that is comparable to
a correction of O(p2) (of course, there are such terms of
O(p2) in the full integral, i.e. the power counting violating
terms). We conclude that the main effect of the graph of
Fig. 3 (at the physical pion mass) is due to the imaginary
part of this diagram, associated with the width of the vector
meson propagator.

12 Chiral extrapolation of the rho meson mass

In this section,we analyse the quarkmass dependence of the
ρ-meson mass and related topics. This is not entirely new,
see e.g. [33, 34], but we do not want to rely on any model
or the assumption of “dominating” contributions to the ρ
self-energy. In fact, there are many different contributions
to the self-energy of the vector mesons, and only a few of the
corresponding LECs are known from phenomenology. Of
course, one could resort to models like the massive Yang–
Mills approach or the extended NJL model to estimate
these parameters (as it is done e.g. in the work of Bijnens
and collaborators [25]), but our goal is more modest. We
resort to parameterizing the pion mass dependence of Mρ

and fix the combinations of LECs from existing lattice
data [35]. This allows one e.g. to analyze the value of Mρ

in the chiral limit.
First, let us discuss the many different contributions

to the vector meson mass. We restrict ourselves to terms
at most quadratic in the quark masses. The first type of
contribution stems from tree diagrams with quark mass
insertions, i.e. operators ∼ χ+ or ∼ χ2

+, like e.g.

〈W · W χ+〉, 〈W · W〉〈χ+〉, . . . , 〈W · W χ2
+〉, . . . (12.1)

The LECs accompanying such explicit symmetry breaking
terms are in general difficult to determine, as it iswell known
from the analysis of the nucleon mass in chiral perturbation
theory; see e.g. [20, 36, 37]. Such tree graphs lead to the
following vector meson mass terms:1

M tree
V = k1 M2

φ + k2 M4
φ, (12.2)

1 To avoid notational clutter, we absorb all prefactors like
1/F 2 etc. in the coefficients ki.

with k1 (k2) a combination of dimension two (four) LECs.
There is also a tree graph without quark mass insertion, it
corresponds to the vector meson mass in the chiral limited,
denoted as M0

V in what follows. Next, we consider the var-
ious one-loop graphs. Tadpole diagrams with an insertion
of the second order effective chiral Lagrangian have also
to be considered; some of the pertinent structures are

〈W · W χ+〉, 〈W · W uαuα〉, 〈WαµW βνgµν uαuβ〉, . . .
Note that in addition to the symmetry breakers of the type
given in (12.1), kinetic terms ∼ ∂µφ ∂µφ from the second
order effective Lagrangian also contribute, thus increasing
the number of LECs to be determined. In the comparable
case of the nucleon mass, these can be determined to good
accuracy form the analysis of pion–nucleon scattering in the
low-energy regime. The total contribution of the tadpoles
to the vector meson mass takes the form

M tadpole
V = k3 M4

φ ln

(
M2

φ

M2
V

)
, (12.3)

with k3 another combination of dimension two LECs. The
sunrise diagram (cf. Fig. 1a) starts to contribute at order
p3 because there are one derivative vertices of the form

〈εµνρσ Wµν ∇α Wαρ uσ〉, . . . ,
A famous example of such a vertex is the ωρπ coupling,
which is generated in meson field theory from the Wess–
Zumino–Witten term; see e.g. [11,12]. It was e.g. considered
in the analysis of [34] as one of what these authors call
“dominating contributions”. Since there are various of such
V V φ couplings, we write the sunrise contribution to the
vector meson mass as

M sunrise
V = k4 M3

φ + k5 M4
φ ln

(
M2

φ

M2
V

)
+ . . . , (12.4)

which is again reminiscent of the leading non-analytic con-
tribution to the nucleon mass. The ellipsis denotes analytic
terms ∼ M4

π and higher order contributions. Finally, we
have to consider the self-energy graph considered in the pre-
ceding section. It leads only to a fourth order contribution
of the form

M self
V = k6 M4

φ ln

(
M2

φ

M2
V

)
+ . . . , (12.5)

To be specific, we consider now the pion mass expansion
of the ρ-meson mass, i.e. we set MV = Mρ and Mφ = Mπ in
the above formulae. Including only the non-analytic terms
from the fourth order, it takes the form

Mρ = M0
ρ + c1 M2

π + c2 M3
π + c3 M4

π ln
(

M2
π

M2
ρ

)
+ O(M4

π),

(12.6)
where M0

ρ is the mass in the chiral limit, and the ci (i =
1, 2, 3) are combinations of coupling constants as discussed
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Fig. 4. The rho meson mass as a function of the light quark
mass, M2

π ∼ (mu + md). The solid (dot-dashed) line(s) refers
to fit 1 (2, 3) as described in the text. The lattice data are from
CP-PACS [35]. The diamond denotes the physical rho mass

Table 1. Fit parameters. � denotes an input quantity

Fit 1 Fit 2 Fit 3
M0

ρ [GeV ] 0.776 0.650� 0.800�

c1[GeV −1] −0.662 2.200 −1.215
c2[GeV −2] 1.291 −1.934 1.915
c3[GeV −3] −1.723 1.572 −2.367

before. In the absence of a detailed phenomenological anal-
ysis of these couplings, we will use the CP-PACS data [35]
for the ρ-meson mass as a function of the pion (average
light quark) mass to determine the parameters M0

ρ , c1, c2

and c3. We only employ lattice data with M2
π � 0.5 GeV2.

In fit 1, we fit these parameters by demanding that the
physical ρ-mass is obtained for Mπ = 140 MeV. For fits 2
and 3, however, this restriction is lifted. In these fits, we
input the chiral limit mass. Throughout, the fits are sub-
jected to the further restriction that one obtains natural
values for the combinations of LECs, that is we enforce
|ci| ≤ 3. The corresponding fit parameters (obtained by
least-square fits) are collected in Table 1.

The corresponding curves are shown in Fig. 4. To get a
better handle on the theoretical uncertainty, we also allow
the fits to stay within the theoretical uncertainty of the
lowest point at M2

π = 0.1 GeV2, as shown in Fig. 5. If we
insist again on naturalness of the coupling constants, we
can bound the ρ-mass in the chiral limit by

650 MeV ≤ M0
ρ ≤ 800 MeV. (12.7)

These results are similar to what was found in the pio-
neering work in [34], but they are less model-dependent.
The range for M0

ρ is also consistent with the numbers de-
rived by Bijnens and collaborators in their study of vector
mesons in chiral perturbation theory [25]. It would be in-
teresting to extend these studies in two directions, first to
include also more recent lattice data and second to try to
give more stringent limits on the combinations of LECs by
incorporating more phenomenological constraints.
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Fig. 5. The rho meson mass as a function of the pion mass:
Theoretical uncertainty as described in the text. For further
notation, see Fig. 4

The quark mass expansion of the ρ-mass (12.6) allows
one to deduce the corresponding σ-term,

σπρ = m̂
∂Mρ

∂m̂
= M2

π

∂Mρ

∂M2
π

, (12.8)

with m̂ the average light quark mass. From the numbers
collected in Table 1, we find

−1.9 M2
π ≤ σπρ ≤ 1.5 M2

π . (12.9)

This shows again that the rho as a massive particle has a
quark mass expansion very different from the pion, where
σπ � M2

π [1]. In magnitude, the rho σ-term is similar to
the pion–nucleon one, σπN � 45 MeV.

13 Summary and outlook

In this paper, we have considered chiral perturbation theory
in the presence of vector and axial-vector mesons (spin-1)
fields and presented an extension of the infrared regulariza-
tion scheme originally developed for baryon chiral pertur-
bation theory. The pertinent results of this investigation
can be summarized as follows.
(1) The most economic way to deal with vector mesons in
chiral perturbation theory is to utilize the antisymmetric
tensor field formulation as stressed in [13]. When vector
mesons appear in tree graphs only, calculations are straight-
forward as summarized in Sect. 2 and Appendix Appendix
A:. Of course, other formulations like the vector field ap-
proach can also be used; see Appendix Appendix B: and
Appendix C:.
(2) When vector mesons appear in loops, the appearance
of the large mass scale complicates the power counting, as
discussed in Sects. 3 and 4. In essence, loop diagrams pick
up large contributions when the loop momentum is close to
the vector meson mass. To the contrary, the contribution
from the soft poles (momenta of the order of the pion mass)
that leads to the interesting chiral terms of the low-energy
EFT (chiral logs and alike) obeys power counting. We have
briefly summarized the method proposed in [19] to extract
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the “soft pole” contribution from one-loop integrals.
(3) The standard case of infrared regularization [20], where
the heavy particle line is conserved in the (one-loop) graphs
is recapitulated in Sect. 5. For these cases a very elegant
splitting of a Feynman parameter integral allows one to un-
ambiguously separate the infrared singular from the regular
part; cf. (5.5).
(4) In the case of spin-1 fields, new classes of self-energy
graphs appear. The case for lines with small external mo-
menta but a vector meson line appearing inside the diagram
in analyzed in Sect. 6 and the singularity structure of the
corresponding integrals is discussed in Sect. 7. In Sect. 8 the
infrared singular part for such types of integrals is explicitly
constructed; cf. (8.4). As explicit examples, the Goldstone
boson self-energy and the triangle diagram are worked out
in Sects. 9 and 10, respectively.
(5) A different type of one-loop graphs appears in the
vector meson self-energy, where only light particles (Gold-
stone bosons) run in the loop. This is discussed in detail
in Sect. 11, where the corresponding infrared singular part
is extracted, see (11.7), and the contribution to the vector
meson mass is worked out. We briefly discuss the problems
related to the imaginary part of such type of diagrams.
(6) As an application, we consider the pion mass depen-
dence of the ρ-meson mass in Sect. 12. We show that there
are many contributions with unknown LECs, still one is
able to derive a compact formula for Mρ(Mπ); see (12.6).
We analyze existing lattice data [35] and conclude that the
ρ-meson mass in the chiral limit is bounded between 650
and 800 MeV. We have also discussed the πρ sigma term.

The methods outlined here can be applied to many in-
teresting problems, for example one could systematically
analyze vector meson effects on Goldstone properties like
form factors or polarizabilities or extend these consider-
ations to systems including baryons (for a first step see
e.g. [23]).

Acknowledgements. We thank Hans Bijnens, Jürg Gasser and
Aneesh Manohar for useful comments and communications.
This research is part of the EU I3HP project under contract
number RII3-CT-2004-506078.

Appendix A: Tensor field approach

In this appendix, we briefly discuss the representation of
spin-1 particles in terms of antisymmetric tensor fields,
following closely Appendix A of [13].

As an antisymmetric tensor field, Wµν has six degrees
of freedom, whereas a massive vector field only has three.
Loosely speaking, there are two spin-1 fields “hidden” in a
general antisymmetric tensor field approach (correspond-
ing to a reducible representation of the rotation group).
To make this clear, we decompose the tensor field Wµν (in
momentum space):

Wµν = (W −PWP )µν +(PWP )µν ≡ WL
µν +WT

µν , (A.1)

where the matrix P is the projector

Pµν = gµν − pµpν

p2 , (A.2)

and pµ is the momentum four-vector associated with the
tensor field. Because of the projector property of P , we have

pµWT
µν = 0,

giving four conditions for six degrees of freedom, but one
condition is redundant due to the antisymmetry property
of Wµν . So we are left with 6 − 3 = 3 degrees of freedom
for WT, and therefore also for WL.

Inserting the above decomposition in the general form
of an action principle for antisymmetric tensor fields [13],

S̃W =
∫

d4x
{
(a − 2b)∂µWµν∂ρW

ρν + b∂ρWµν∂ρW
µν

+cWµνWµν
}

, (A.3)

with arbitrary parameters a, b, and c �= 0, and using

WL
µνWµν

T = 0,

which is easily verified by a direct calculation, we see that
the action splits in two terms:

S̃W = SWL + SWT , (A.4)

where

SWL =
∫

d4x
(
a∂µWL

µν∂ρW
ρν
L + cWL

µνWµν
L

)
,

SWT =
∫

d4x
(
b∂ρWT

µν∂ρW
µν
T + cWT

µνWµν
T

)
.

Therefore, the path integral can also be factored:∫
[dW ]eiS̃W =

∫
[dWL]eiSWL

∫
[dWT]eiSWT . (A.5)

In the rest frame, this decomposition corresponds to

[dW ] = [dWL][dWT] =
3∏

i=1

[dW0i]
3∏

i<j

[dWij ].

Following [13], we choose b = 0, so that the second path
integral becomes an unimportant constant (from the view-
point of the classical action,WT becomes anon-propagating
field). For a = 0, in contrast, WL would be “frozen” in this
way. Choosing, furthermore,

a = − 1
2

, c =
M2

V

4
, (A.6)

and dropping the letter L, the massive vector field is de-
scribed by∫

[dW ]eiSW =
∫

[dW ] (A.7)

×exp
{

i
∫

d4x

(
− 1

2
∂µWµν∂ρW

ρν +
M2

V

4
WµνWµν

)}
.
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Without invalidating the above argument, we can also add
a coupling linear in W , of the form

− 1
4

JµνWµν ,

with some external antisymmetric current Jµν . Since we
do not use couplings quadratic in the tensor field in this
work, we will not attempt to extend the given argument
to Lagrangians including such more complicated interac-
tion terms.

Appendix B: Vector field approach

One can now ask how much the results obtained from
calculations similar to the ones in the main body of the text
depend on the description in terms of an antisymmetric
tensor field. Of course a dependence of that kind is not
wanted for physical observables!

What happens if one uses a more conventional vector
field approach for the description of the vector mesons? The
Lagrangian for a massive vector field Vµ is well known:

Lkin
V = − 1

4
〈VµνV µν〉 +

1
2

M2
V 〈VµV µ〉, (B.1)

where Vµν is the field strength tensor associated with Vµ,

Vµν = ∇µVν − ∇νVµ.

The corresponding vector field propagator (in momentum
space) reads

Gµν(k) = (−i)

(
gµν − kµkν

M2
V

)
k2 − M2

V + iε
. (B.2)

If one now tries to write down interaction terms in analogy
to the ones given before, it is seen that they are all O(p3),
giving a resonance exchange diagram of O(p6) in contrast
to the O(p4) result derived with the antisymmetric tensor
field description. In particular, the interaction terms are

Lint
V = − fV

2
√

2
〈F+

µνV µν〉 − igV

2
√

2
〈[uµ, uν ]V µν〉. (B.3)

Here fV and gV are new coupling constants, and the minus
sign is a pure convention. This interaction looks very much
like (2.11), but note that the tensor Vµν contains, from its
definition, an additional derivative giving the interaction
the order O(p3) instead of O(p2). The form factor contri-
bution derived with this interaction is of higher order than
the result of the last section and does not agree with exper-
iment. If we had started with a vector field description for
vector mesons, we might have concluded that the vector
meson contribution is less important than suggested, for
example, by a dispersive analysis. This problem was al-
ready solved in [15], we simply repeat here some of salient
ingredients in a slightly different way.

The mathematical relation between the two variants of
the theory was worked out in [15] by imposing e.g. the large

momentum transfer constraints on the pion vector form
factor. In Appendix Appendix C:, we argue that the La-
grangians

Lkin
W − 1

4
〈JµνWµν〉 (B.4)

and

Lkin
V +

1
4MV

〈JµνV µν〉 − 1
16M2

V

〈JµνJµν〉 (B.5)

indeed give equivalent theories on the level of the path
integrals, when Jµν are some traceless hermitian sources.
This equivalence is achieved by simply integrating out the
field Wµν , which leads to the appearance of contact terms
quadratic in the source. The source terms we use are

Jµν = −
√

2(FV F+
µν + iGV [uµ, uν ])

(compare (2.11)) and, assuming the validity of the path-
integral argument for the equivalence, we draw the conclu-
sion that equivalence leads to

fV =
FV

MV
, gV =

GV

MV
, (B.6)

in perfect agreement with [15]. Furthermore, since the Vµν-
couplings are of O(p3), we conclude that vector meson
exchange to lowest order O(p4) can be represented by the
contact terms

1
16M2

V

〈JµνJµν〉

=
〈

− G2
V

8M2
V

[uµ, uν ][uµ, uν ] +
F 2

V

8M2
V

F+
µνFµν

+

+
iFV GV

4M2
V

F+
µν [uµ, uν ]

〉
.

Using the definition of the objects uµ and F+
µν and standard

trace relations, the contact terms can be written as

− 1
16M2

V

〈JµνJµν〉

= LV
1 P1 + LV

2 P2 + LV
3 P3 + LV

9 P9 + LV
10P10 + HV

11P11,

with Pi the structures of the fourth order meson Lagrangian
[2] and furthermore

LV
1 =

G2
V

8M2
V

, LV
2 = 2LV

1 , LV
3 = −6LV

1

LV
9 =

FV GV

2M2
V

, LV
10 = − F 2

V

4M2
V

, HV
11 = − F 2

V

8M2
V

.

Appendix C: Duality transformation

The action for an antisymmetric tensor field Wµν is

SW =
∫

d4x LW (C.1)
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Note that Wµν now stands for the field WL
µν , having three

degrees of freedom, as discussed in Appendix Appendix A:.
Now let us modify this action by a term containing a vector
field Vµ:

LV,W = LW − 1
4

JµνWµν +
M2

V

2

(
Vµ − 1

MV
∂νWνµ

)2

.

(C.2)
We have also added a source term linear in Wµν . The equa-
tions of motion (EOM) following from this Lagrangian are

Wµν +
1

MV
(∂µVν − ∂νVµ) =

1
2M2

V

Jµν , (C.3)

Vµ − 1
MV

(∂σWσµ) = 0. (C.4)

Substituting Vµ from the second equation into the first
one, the latter becomes the “old” EOM following from
LW − 1

4 J ·W alone. So on the classical level, the additional
squared term does not change anything.

Considering now path integrals, we deduce by a Gaus-
sian integration over V that∫

[dW ]ei
∫

d4x(LW − 1
4 JµνW µν) ∼

∫
[dW ]

∫
[dV ]ei

∫
d4xLV,W ,

(C.5)
where the “∼” means “up to a constant factor”. It must
be noted here that the vector field V should be treated
like W , that is using a constraint to eliminate one degree
of freedom. On the classical level, the second EOM says
that V has the same number of degrees of freedom as W ,
i.e. three d.o.f. Contributions of the path integral over V
deviating from this e.o.m are exponentially damped like
e−x2

because of the form of the squared term in LV,W .
Using a constraint on V , we will get just another constant
prefactor as long as this constraint is linear in the field.

Ifwenow recklessly interchange the order of integrations
on the right-hand side of (C.5), define

Vµν = ∂µVν − ∂νVµ,

and do the W -integration, we get∫
[dW ]ei

∫
d4x (LW − 1

4 JµνW µν) ∼
∫

[dV ][dW ]

× exp
{

i
∫

d4x

(
1
4

M2
V WµνWµν − 1

4
JµνWµν

+
M2

V

2
VµV µ +

MV

2
VµνWµν

)}
(C.6)

∼
∫

[dV ] exp
{

i
∫

d4x

(
− 1

4
VµνV µν +

M2
V

2
VµV µ

+
1

4MV
JµνV µν − 1

16M2
V

JµνJµν

)}
.

This corresponds to a conventional vector field Lagrangian,
together with contact terms of the form

− 1
16M2

V

JµνJµν .

If the tensor field W is given in the matrix notation of (2.6),
which implies that one has to take the (flavor) trace of every
term in the Lagrangian LW , the source term linear in the
field W a

µν can be taken as

− 1
4

〈WµνJµν〉 = − 1
4
√

2
W a

µν〈T aJµν〉.

If Jµν is traceless and hermitian (which is the case for
the couplings we consider in (2.11)), we produce the con-
tact terms(

1
16M2

V

)
1√
2

〈JµνT a〉 1√
2

〈JµνT a〉 =
1

16M2
V

〈JµνJµν〉,

which justifies the form of the contact terms given in the
preceding appendix.

A path-integral approach to show the duality of the
antisymmetric tensor field and the vector field description
has also been presented in [38], but the approach used here
is shorter. In principle, we have not done much more than a
Legendre transformation to change variables from∂W toV .
TheW -field has been integrated out, leaving as a “souvenir”
only the contact terms. As in the foregoing Appendix, we
do not attempt to include also more complicated coupling
terms in such a transformation, with the excuse that in
this work the contact terms are only needed for the linear
interaction of (2.11).

Appendix D: Loop integrals

In this Appendix we treat the reduction of general loop in-
tegrals to linear combinations of scalar loop integrals. The
scalar loop integrals Iφ and IV have been defined in (9.5)
and (9.6), respectively, while IV φ was defined in (5.1). Writ-
ing q2 = (q2 − M2

V ) + M2
V , one derives

i
∫

ddq

(2π)d

q2

(q2 − M2
V )((q − p)2 − M2

φ)

= Iφ + M2
V IV φ(p). (D.1)

Moreover, by Lorentz invariance, we must have

i
∫

ddq

(2π)d

qµ

(q2 − M2
V )((q − p)2 − M2

φ)
= pµS, (D.2)

because there is no other four-vector than pµ available here.
The scalar S can be found by contracting with pµ:

S =
i

2p2

∫
ddq

(2π)d

q2 + p2 − (q − p)2

(q2 − M2
V )((q − p)2 − M2

φ)

=
1

2p2 (Iφ − IV + (M2
V − M2

φ + p2)IV φ). (D.3)

Using both results together, we can compute

i
∫

ddq

(2π)d

(p · q)qµ

(q2 − M2
V )((q − p)2 − M2

φ)
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=
pµ

4p2 (aφIφ + aV IV + aV φIV φ), (D.4)

where the coefficients are given by

aφ = M2
V − M2

φ + 3p2,

aV = M2
φ − M2

V − p2, aV φ = a2
V . (D.5)

These results so far are already sufficient to arrive at the
decomposition of (9.3) for IΣ . Another useful result is also
derived using Lorentz invariance:

i
∫

ddq

(2π)d

qµqν

(q2 − M2
φ)((q − p)2 − M2

φ)

= gµνA(p) +
pµpν

p2 B(p). (D.6)

The coefficients can be found by contracting with gµν and
pµ, using the above results and gµνgµν = d :

(d − 1)A(p) =
1
2

Iφ +
1
4

(4M2
φ − p2)Iφφ(p), (D.7)

(d − 1)B(p) =
(

d

2
− 1
)

Iφ +
(

d

4
p2 − M2

φ

)
Iφφ(p).

Here the integral Iφφ(p) is obtained from IV φ(p) by sub-
stituting Mφ for MV .

The last result we have to derive is the integral Iτ
∆(p, k),

which we only need for on-shell kinematics , p2 = k2 = M2
φ.

Using the algebraic decomposition

4(p · k)q2 − 4(p · q)(k · q)
(q2 − M2

V )(q2 − 2q · p)(q2 − 2q · k)

=
4(p · k)M2

V − M4
V

(q2 − M2
V )(q2 − 2q · p)(q2 − 2q · k)

+
4(p · k) − q2 − M2

V

(q2 − 2q · p)(q2 − 2q · k)
− 1

q2 − M2
V

+
1

q2 − 2q · p
+

1
q2 − 2q · k

+
M2

V

(q2 − M2
V )(q2 − 2q · p)

+
M2

V

(q2 − M2
V )(q2 − 2q · k)

,

the results obtained in this appendix enable us to calculate

Iτ
∆(p, k) = i

∫
ddq

(2π)d

(p + k − 2q)τ ((p · k)q2 − (p · q)(k · q))
(q2 − M2

V )((q − p)2 − M2
φ)((q − k)2 − M2

φ)

= (p + k)τ (dV φφIV φφ(p, k) + dV φIV φ

+dφφIφφ(k − p) + dφIφ + dV IV ). (D.8)

The coefficients are given by

4dV φφ =
(M2

φ − M2
V + (p · k))(4(p · k)M2

V − M4
V )

M2
φ + (p · k)

,

4dV φ =
2M2

φM2
V − M4

V

M2
φ

− M4
V − 4(p · k)M2

V

M2
φ + (p · k)

,

4dφφ =
M2

φ + (p · k)
d − 1

− 4(p · k)M2
V − M4

V

M2
φ + (p · k)

,

4dφ =
1

d − 1
− M2

V

M2
φ

, 4dV =
M2

V

M2
φ

− 1. (D.9)

We remind the reader that this is valid only for p2 = k2 =
M2

φ. For this case, we have IV φ(k) = IV φ(p) ≡ IV φ .
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